10 research outputs found

    Supervised Learning Applied to Air Traffic Trajectory Classification

    Get PDF
    Given the recent increase of interest in introducing new vehicle types and missions into the National Airspace System, a transition towards a more autonomous air traffic control system is required in order to enable and handle increased density and complexity. This paper presents an exploratory effort of the needed autonomous capabilities by exploring supervised learning techniques in the context of aircraft trajectories. In particular, it focuses on the application of machine learning algorithms and neural network models to a runway recognition trajectory-classification study. It investigates the applicability and effectiveness of various classifiers using datasets containing trajectory records for a month of air traffic. A feature importance and sensitivity analysis are conducted to challenge the chosen time-based datasets and the ten selected features. The study demonstrates that classification accuracy levels of 90% and above can be reached in less than 40 seconds of training for most machine learning classifiers when one track data point, described by the ten selected features at a particular time step, per trajectory is used as input. It also shows that neural network models can achieve similar accuracy levels but at higher training time costs

    Optimizing Integrated Arrival, Departure and Surface Operations Under Uncertainty

    Get PDF
    In airports and surrounding terminal airspaces, the integration of arrival, departure and surface scheduling and routing have the potential to improve the operations efficiency. Recent research had developed mixed-integer-linear programming algorithm-based scheduler for integrated arrival and departure operations in the presence of uncertainty. This paper extends to the surface previous research performed by the authors to integrate taxiway and runway operations. The developed algorithm is capable of computing optimal aircraft schedules and routings that reflects the integration of air and ground operations. A preliminary study case is conducted for a set of thirteen aircraft evolving in a model of the Los Angeles International airport and surrounding terminal areas. Using historical data, a representative traffic scenario is constructed and probabilistic distributions of pushback delay and arrival gate delay are obtained. To assess the benefits of optimization, a First- Come-First-Serve algorithm approach comparison is realized. Evaluation results demonstrate that the optimization can help identifying runway sequencing and schedule that reduce gate waiting time without increasing average taxi times

    Simulation Evaluations of an Autonomous Urban Air Mobility Network Management and Separation Service

    Get PDF
    This paper presents an initial implementation of an autonomous Urban Air Mobility network management and aircraft separation service for urban airspace that does 1) departure and arrival scheduling across the network, 2) continuous trajectory management to ensure safe separation between aircraft, and 3) seamless integration with traditional operations. The highly-autonomous AutoResolver algorithm developed for traditional aviation was extended to provide these capabilities. An evaluation of this initial implementation was conducted in fast-time simulations using a dense, two-hour traffic scenario with Urban Air Mobility aircraft flying between a network of 20 vertiports in the Dallas-Fort Worth metroplex. When the spatial separation was reduced from 0:3nmi to 0:1nmi, the total de- lay decreased by 7:3%; when the temporal separation was reduced from 60s to 45s, the total delay decreased by 28:4%. The total number of conflict resolutions decreased by 26% and 17%, respectively. Furthermore, when a scheduling horizon greater than the duration of UAM flights was used (50min), most conflicts were resolved pre-departure producing ground delay. By comparison, when a shorter scheduling horizon was used (8min), most conflicts were resolved post-departure generating airborne delay. For all scheduling and separation constraints tested, AutoResolver prevented loss of separation from occurring. Urban Air Mobility operations have the ability to revolutionize how people and goods are transported and this paper presents initial research focusing on the high levels of autonomy required for an airspace system capable of scaling to handle significantly higher densities of aircraft

    Optimizing Integrated Terminal Airspace Operations Under Uncertainty

    Get PDF
    In the terminal airspace, integrated departures and arrivals have the potential to increase operations efficiency. Recent research has developed geneticalgorithm- based schedulers for integrated arrival and departure operations under uncertainty. This paper presents an alternate method using a machine jobshop scheduling formulation to model the integrated airspace operations. A multistage stochastic programming approach is chosen to formulate the problem and candidate solutions are obtained by solving sample average approximation problems with finite sample size. Because approximate solutions are computed, the proposed algorithm incorporates the computation of statistical bounds to estimate the optimality of the candidate solutions. A proof-ofconcept study is conducted on a baseline implementation of a simple problem considering a fleet mix of 14 aircraft evolving in a model of the Los Angeles terminal airspace. A more thorough statistical analysis is also performed to evaluate the impact of the number of scenarios considered in the sampled problem. To handle extensive sampling computations, a multithreading technique is introduced

    Supervised Learning Applied to Air Traffic Trajectory Classification

    Get PDF
    Given the recent increase of interest in introducing new vehicle types and missions into the National Airspace System, a transition towards a more autonomous air traffic control system is required in order to enable and handle increased density and complexity. This paper presents an exploratory effort of the needed autonomous capabilities by exploring supervised learning techniques in the context of aircraft trajectories. In particular, it focuses on the application of machine learning algorithms and neural network models to a runway recognition trajectory-classification study. It investigates the applicability and effectiveness of various classifiers using datasets containing trajectory records for a month of air traffic. A feature importance and sensitivity analysis are conducted to challenge the chosen time-based datasets and the ten selected features. The study demonstrates that classification accuracy levels of 90% and above can be reached in less than 40 seconds of training for most machine learning classifiers when one track data point, described by the ten selected features at a particular time step, per trajectory is used as input. It also shows that neural network models can achieve similar accuracy levels but at higher training time costs

    Simulation Evaluations of an Autonomous Urban Air Mobility Network Management and Separation Service

    Get PDF
    This presents an initial implementation of an autonomous Urban Air Mobility network management and aircraft separation service for urban airspace that does 1) departure and arrival scheduling across the network, 2) continuous trajectory management to ensure safe separation between aircraft, and 3) seamless integration with traditional operations. The highly-autonomous AutoResolver algorithm developed for traditional aviation was extended to provide these capabilities. An evaluation of this initial implementation was conducted in fast-time simulations using a dense, two-hour traffic scenario with Urban Air Mobility aircraft flying between a network of 20 vertiports in the Dallas-Fort Worth metroplex. When the spatial separation was reduced from 0:3 nmi (nautical miles) to 0:1nmi, the total delay decreased by 7:3 percent..

    Autonomous Coordinated Airspace Services for Terminal and Enroute Operations with Wind Errors

    Get PDF
    As novel uses of the airspace continue to multiply, there is increasing demand for access to high-density terminal areas around major airports. Since the predicted demand for urban-air-mobility and urban-package-delivery is very high, and the interactions between these different types of aircraft and missions will be extremely complex, increasingly autonomous systems will be required to manage safety and efficiency. This paper presents the current status of an autonomous safety system designed to ensure safe and efficient trajectories for aircraft in terminal airspace, the Terminal Advanced Airspace Concept. Previous papers have demonstrated the efficacy of this algorithm for handling commercial arrivals into a complex metroplex when there is no uncertainty present. This study extends that work to demonstrate the performance of the algorithm under high levels of uncertainty

    Autonomous Coordinated Airspace Services for Terminal and Enroute Operations with Wind Errors

    Get PDF
    As novel uses of the airspace continue to multiply, there is increasing demand for access to high-density terminal areas around major airports. Since the predicted demand for urban-air-mobility and urban-package-delivery is very high, and the interactions between these different types of aircraft and missions will be extremely complex, increasingly autonomous systems will be required to manage safety and efficiency. This paper presents the current status of an autonomous safety system designed to ensure safe and efficient trajectories for aircraft in terminal airspace, the Terminal Advanced Airspace Concept. Previous papers have demonstrated the efficacy of this algorithm for handling commercial arrivals into a complex metroplex when there is no uncertainty present. This study extends that work to demonstrate the performance of the algorithm under high levels of uncertainty

    Optimizing integrated airport surface and terminal airspace operations under uncertainty

    Get PDF
    In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is performed for the Los Angeles environment and probabilistic distributions of pertinent uncertainty sources are obtained. A sensitivity analysis is then carried out to assess the methodology performance and find optimal sampling parameters. Finally, simulations of increasing traffic density in the presence of uncertainty are conducted first for integrated arrivals and departures, then for integrated surface and air operations. To compare the optimization results and show the benefits of integrated operations, two aircraft separation methods are implemented that offer different routing options. The simulations of integrated air operations and the simulations of integrated air and surface operations demonstrate that significant traveling time savings, both total and individual surface and air times, can be obtained when more direct routes are allowed to be traveled even in the presence of uncertainty. The resulting routings induce however extra take off delay for departing flights. As a consequence, some flights cannot meet their initial assigned runway slot which engenders runway position shifting when comparing resulting runway sequences computed under both deterministic and stochastic conditions. The optimization is able to compute an optimal runway schedule that represents an optimal balance between total schedule delays and total travel times

    An Aggregate Air Traffic Forecasting Model subject to Stochastic Inputs

    No full text
    This paper introduces an aggregate air traffic model that calculates the number of aircraft in each Air Route Traffic Center in the United States at any time iteration. The algorithm has the feature of being able to compute the shortest path of an aircraft using future previsions. Weather perturbations and available resources are two main types of input that have a stochastic nature due to their uncertainties. Too often they result in last minute delays or flight cancellations. Thus when predictions are available, their integrations in the path computation modify the aircraft trajectories accordingly, generating robust flight plans. More importantly, this algorithm handles different aircraft types which fly at different cruising speeds, making the scenarios being tested more realistic. Three simple scenarios were tested to validate this aggregate model. A large scale example using historical traffic data of a typical day in the National Airspace System is also presented. The results in comparison with uncontrolled simulations performed in the Future Automation Concepts Evaluation tool show that the model constitutes a potential Traffic Flow Management strategy. Nomenclatur
    corecore